Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

نویسندگان

  • Han Yue
  • Mark Simons
  • Zacharie Duputel
  • Junle Jiang
  • Eric Fielding
  • Cunren Liang
  • Susan Owen
  • Angelyn Moore
  • Bryan Riel
  • Jean Paul Ampuero
  • Sergey V. Samsonov
چکیده

Article history: Received 24 February 2016 Received in revised form 11 July 2016 Accepted 12 July 2016 Available online xxxx OnApril 25th 2015, theMw7.8 Gorkha (Nepal) earthquake ruptured a portion of theMain Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03–0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture,while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquakemay have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatality rates of the Mw ~8.2, 1934, Bihar–Nepal earthquake and comparison with the April 2015 Gorkha earthquake

Large Himalayan earthquakes expose rapidly growing populations of millions of people to high levels of seismic hazards, in particular in northeast India and Nepal. Calibrating vulnerability models specific to this region of the world is therefore crucial to the development of reliable mitigation measures. Here, we reevaluate the >15,700 casualties (8500 in Nepal and 7200 in India) from the Mw ~...

متن کامل

Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites

The 25 April 2015 Mw 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after...

متن کامل

Joint inversion of teleseismic, geodetic, and near-field waveform datasets for rupture process of the 2015 Gorkha, Nepal, earthquake

The 2015 Gorkha earthquake and its aftershocks caused severe damage mostly in Nepal, while countries around the Himalayan region were warned for decades about large Himalayan earthquakes and the seismic vulnerability of these countries. However, the magnitude of the Gorkha earthquake was smaller than those of historical earthquakes in Nepal, and the most severe damage occurred in the north and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016